Home - Blog

Analog Integrated Circuit: Why You Need It

The analog integrated circuit is one of the categories of the IC. In addition, it’s a fundamental component of most electronic devices.

For instance, you can find this type of IC in most consumer electronics. Why? Because the IC helps digital devices, computers, mobile phones, etc., work.

Also, this IC is useful for wideband signals and other higher power applications. So, excellent examples of this IC are the 555 timer, operational amplifiers, sensors, etc.

But the device doesn’t apply to all electronic devices. Hence, we created this article to discuss the analog integrated circuit. So, you’ll learn about what it is, why you need it, and more.

Let’s proceed! 

What Is an Analog Integrated Circuit?

Outline Analog Integrated Circuit

Outline Analog Integrated Circuit

Source: Wikimedia Commons

This device is a primary component of most electronic devices. Moreover, it helps to handle signals that are free to run from nothing (zero) to the full power supply voltage.

Also, the circuit usually has two inputs; one input is positive, while the other is negative. In addition, each of the inputs is non-inverting and inverting, respectively. 

Further, the components that make up an analog integrated circuit are:

  • Capacitors
  • Resistors
  • Semiconductors
  • Inductors

So, you can use the device to design: 

  • Operative amplifiers
  • Oscillators
  • active filters
  • Linear regulators
  • Software phase-locked loops

But, it’s crucial to consider semiconductor parameters like resistance, power dissipation, and power gain.

In other words, the analog integrated circuit works by changing different analog inputs like heat, sound, and light. Also, it converts them to digital signals and zeros for processing. In addition, analog integrated circuits come with a longer lifespan than electronic devices. 

Why Do You Need Analog Electronics?

Analog Integrated Switch

Analog Integrated Switch

Source: Wikimedia Commons

Even though things have evolved in the electronics industry, analog is still going strong. No doubt, most things are digital, but it’s more convenient to represent numbers numerically in a binary system. For instance, it’s easier to relate “1” and “0” as “ON” and “OFF.” 

So, unlike digital IC design, analog IC design requires more focus for:

  • Every circuit 
  • The exact features of the transistor 
  • The size

The reason is simple. Nowadays, most devices are digital, so analog IC designers are forced to work with process features and constraints. Why? Because the process features and constraints are more suitable for digital ICs.

Design Specification for Analog IC

Like digital IC, analog designers should start with an array of features and specifications. Afterward, they use working and active models for the various functions to scale down analog IC constraints. 

Then, they come up with:

  • Process features
  • Type
  • Device size 

So, in most cases, it includes:

  • Addition of capacitor and inductor technologies 
  • The standard figure for the integrated and sub circuits 
  • Making transistor choice

Also, you can create high-level simulations and even figure the sub blocks constraints with an HDL like VHDL-AMS.

The Design Flow for Analog IC

Here are the steps required for an analog IC design:

1. Specification of Design

  • Test bench development
  • Topologies
  • Constraints
  • Specifications

2. Flow Schematic Design

  • Circuit simulation and optimization
  • Circuit-level schematic entry
  • Block HDL specification
  • Architecture HDL simulation
  • System-level schematic entry

3. Somatic Flow

  • Tape-out
  • Post-layout simulation
  • Parasitic extraction
  • Layout versus schematic (LVS)
  • Design rule check (DRC)
  • PCell-based layout entry

Analog Integrated Circuit Design

A simple analog IC design

A simple analog IC design

Source: ExplainthatStuff

Indeed, there’s a process you need to follow in coming up with an analog IC design. Plus, the procedure involves the following in no particular order:

  • Circuit simulations
  • System design
  • Circuit design
  • Circuit debug
  • System debug
  • Verification
  • System simulations
  • Integrated circuit layout design
  • Fabrication
  • Interconnect
  • Component design
  • Device debug

But, the practical aspect of the analog IC design involves:

1. The Block Level System

It’s also known as the Cell level system. Plus, this system includes the tactics required to create a block-level design for a particular integrated circuit. So, when your designs are set, link each of them to form a complete block-level system. 

2. The Component Level Circuit

The components you’ll use here are based on the results of the block-level system.

So, when you have the appropriate components, connect them to create the component-level circuit. Then, you can use it as your analog design’s primary circuit. Plus, it also works for simulation. 

3. Confirming Component Level Circuit

You can also use the component-level circuit for confirmation. But this happens after you have simulated the circuit design. So, with the simulation result, you can verify the analog IC’s component-level circuit.

4. Creation of IC

Indeed, there are several steps to follow to create analog integrated circuits. First off, you can start by using semiconductor materials to make the semiconductor wafer. Or you can get a ready-made semiconductor wafer.

Afterward, you can add different electronic components like the transistors, capacitors, resistors, etc., to the wafer. Then, you can pack the chip—which forms the package IC. 

5. Testing and Debugging IC

At this stage, you can test the analog integrated circuit. Also, you can debug it to compare the checking and estimated results. So, if everything looks good, proceed to design the IC prototype. Then, use the prototype to characterize the evaluation board and integrated circuit. 

What Is the Difference Between Analog and Digital IC?

The table below summarizes the difference between the analog and digital IC:

Analog ICSDigital ICs
The analog or linear IC works on a constantly varying signal—concerning time.The digital or non-linear IC works on binary signals.
The analog IC design requirements are far-reaching compared to the digital ICs.The digital IC design requirement is less radical compared to the analog IC.
Some applications of the analog IC include oscilloscopes, radars, aircraft, PLL, space, etc.Some applications of the digital IC include calculators, clocks, microprocessors, digital watches, computers, etc.
You can get the commercial version of the analog IC as microwave amplifiers, voltage comparators, regulators, voltage multipliers, etc.You can find the digital IC commercially as registers, analog to digital chips, counters, digital to analog chips, flip flops, microprocessor chips, logic gates, etc.
It has fewer transistors compared to the digital IC.The digital ICs have more transistors compared to analog ICs.
The analog IC has outputs and inputs that can handle a continuous range of values. Plus, the result is proportional to the information.The digital IC has two voltages (input and output) with two possible values—without intervening levels.

Applications of the Analog Integrated Circuit

You can apply the analog integrated circuit in the following applications:

1. Power management Circuit

When you take a close look at the analog IC’s design, you’ll notice that all its components need power. Also, you can use the network of conductors (power management circuit) on the on-chip components to deliver the necessary electrical power designed on-chip.

Power Management Circuit

Power Management Circuit

Source: Wikimedia Commons

Also, the power management circuit (network of conductors) design and analyze the delivered power within the circuit. 

2. Frequency Mixing

Indeed, frequency mixing uses two different signals applied to a circuit to get a new frequency. So, you can get a frequency mixer from the analog integrated circuit. You can also use the frequency mixer to change signal forms in a different range of frequencies. 

3. Active filtering

Of course, the analog IC is adequate for active filtering. Also, it does this by using active electronic components—to boost performance. So, the filter should prevent a pricey and bulky inductor. In addition, there are varieties of the active filter’s configurations like multiple feedback filters, sallen-key filters, etc.

Final Words

The analog integrated circuit is a device that consists of a semiconductor wafer with the interconnection of components. Interestingly, this type of IC is reliable and cost-effective, and the device is ideal for professional circuit designers, hobbyists, and students.

Have you used the analog integrated circuit? Or do you need help with getting the best one for your project? Please feel free to contact us.

Hommer
Hi, I am Hommer, the founder of WellPCB. So far we have more than 4,000 customers worldwide. Any questions you can feel free to contact me. Thanks in advance.

Services